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Deep learning in photonics: introduction
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The connection between Maxwell’s equations and neural networks opens unprecedented opportunities at the
interface between photonics and deep learning. This feature issue highlights recent research progress at the
interdisciplinary field of photonics and deep learning and provides an opportunity for different communities

to exchange their ideas from different perspectives.
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The application of deep learning in photonics has gained a tre-
mendous amount of attention in the past few years. This inter-
disciplinary research covers a broad range of topics, including
the inverse design of photonic devices, enhanced sensing and
imaging, neuromorphic computing, and many other emerging
applications. This feature issue provides a snapshot of current
research with a collection of recent advances in this thriving
field. We feature 28 papers contributed by experts from various
aspects of photonics research.

The first collection of works in this issue focuses on using
deep learning for device design. Conventional design of pho-
tonic structures often requires solving Maxwell’s equations on a
large scale. However, our capability to solve Maxwell’s equation
has significantly lagged behind today’s fabrication capability
that routinely produces devices with millions of nanostructure
features. Using neural networks for photonic design allows re-
searchers to tap into a rich set of machine-learning algorithms
which enable fast inverse design and optimization. Examples
include on-demand design of spectrally sensitive multi-band
absorber [1], Fabry—Pérot-cavity-based color filters far beyond
sRGB [2], transmitted metasurface cloak by tandem neural net-
work [3] and intelligent coding metasurface hologram by phys-
ics assisted unsupervised generative adversarial network [4].
Strategy that combines deep neural network with genetic algo-
rithms requires significantly less training data and enables
highly efficient inverse designs [5]. For a more comprehensive
review of past research and future perspective, Yongmin Liu
and Peter R. Wiecha are invited to contribute two reviews
on how to interface photonics with artificial intelligence, with
focus on the inverse design strategy and applications beyond
inverse design [6,7].
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Deep learning could also help to deepen our understanding
of complex nanophotonic structures. Emerging complex
photonic structures derive their properties from a large network
of inter-dependent nano-elements with both local and global
connections. The vast parameter space offers unprecedented
opportunities for device application, but at the same time
presents a daunting challenge for developing an understanding
of such complex structures. Deep learning could leverage such
problems to recognize misaligned hyperfine orbital angular mo-
mentum modes [8], achieve phase compensation for free-space
angular momentum-encoded quantum key distribution [9],
enable automatic highly efficient photon distribution estima-
tion via deep reinforcement learning [10], engineer multiple
bound states in the continuum by latent representation of free-
form structures [11], and identify modulation format in fiber
communications using a single dynamical node [12].

The ever-increasing computing power required by deep
learning prompts the search for alternative computing methods
that are faster and more energy efficient. Optical analog comput-
ing can be passive with minimal energy consumption, and more
importantly, its intrinsic parallelism can significantly accelerate
computing speed. Such a capability is potentially useful as an
optical preprocessor for real-time high-throughput image
processing. Wave dynamics in a highly scattering medium
can provide an alternative way to perform neuromorphic
computing. Nanostructured photonic devices can exploit sub-
wavelength linear and nonlinear scatterers to realize complex in-
put-output mapping far beyond the capabilities of traditional
nanophotonic devices. Theoretical and experimental explora-
tion works in this feature issue have discussed neuromorphic
node based on quantum dot laser [13], end-to-end optical
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backpropagation for training neural networks [14], free-space
optical neural network based on thermal atomic nonlinearity
[15], deep-learning empowered dynamic wavefront shaping
in nonstationary scattering media [16], delay weight plasticity
based on supervised learning in photonic spiking neural net-
works [17], and all-optical neuromorphic binary convolution
with spiking VCSEL neurons [18].

Another area of great interest is the application of deep
learning in imaging analysis and computational cameras.
Representative examples include deep compressive imaging
techniques via optimized-pattern scanning [19], compressed
ultrafast  photography via an augmented-Lagrangian and
deep-learning hybrid algorithm [20], and deep plug-and-play
priors for spectral snapshot compressive imaging [21]. Image
reconstruction  techniques  include  denoising  and
reconstruction of super-resolution structured illumination
microscopy images [22], and a simple low-SWal hybrid ma-
chine vision system for universal training and generalized image
reconstruction [23]. Novel imaging strategies through un-
known scattering media based on physics informed learning
[24], and incoherent imaging through highly dynamic and op-
tically thick turbid media [25] are also demonstrated.

The last area that this feature issue highlights is the use of
deep learning for sensors such as a smart ring resonator-based
sensor for multicomponent chemical analysis [26] and sensing
in the presence of strong noise by deep learning of dynamic
multimode fiber interference [27]. A real-time deep learning
design tool for far-field radiation profile [28] has been demon-
strated for easy adoption and accessibility for device
designers.

We take this opportunity to thank Prof. Lan Yang, the
Editor-in-Chief, and Prof. Cun-Zheng Ning, the Deputy
Editor for inviting us to organize this feature issue. They pro-
vide many helpful suggestions that greatly improve this feature
issue. We also want to thank the editorial staff for their great
support. We are also grateful to the reviewers that have helped
us assess the quality and originality of the large amount of sub-
mitted papers, while keeping a high standard for our feature
issue. Finally, and most importantly, we thank all the authors
for submitting and contributing to this feature issue which pro-
vides a snapshot of exciting ongoing research work in the field
and the opportunities that deep learning tools offer for the
future of photonics technologies.
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